Case-based Reasoning for the Design of Micro-electro-mechanical Systems

نویسنده

  • Corie L. Cobb
چکیده

Although Micro-Electro-Mechanical Systems (MEMS) are forming the basis for a rapidly growing industry and fields of research, many MEMS designers still rely on backof-the-envelope calculations due to a lack of efficient computer-aided design (CAD) tools that can assist with the initial stages of design exploration. This paper introduces case-based reasoning (CBR) techniques to the design of MEMS, as part of a larger MEMS synthesis framework currently under development at UC Berkeley. Having the ability to draw upon past design knowledge is advantageous to the MEMS designer, allowing reuse and modification of previous successful designs to help deal with the complexities of a new design problem. CBR utilizes past successful MEMS designs and sub-assemblies as building blocks stored in an indexed library. Reasoning tools find cases in the library with solved problems similar to the current design problem in order to propose promising conceptual designs. This paper discusses case representation and case library design as well as the results of case retrieval studies, focusing on MEMS resonant structures. The paper recommends strategies for integrating the MEMS case library with evolutionary computation when parameter optimization over the retrieved conceptual designs is not sufficient or there are gaps of knowledge in the case library.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Fractional Order Control of Micro Electro-Mechanical Systems

This paper addresses the problem of the fractional sliding mode control (FSMC) for a MEMS optical switch. The proposed scheme utilizes a fractional sliding surface to describe dynamic behavior of the system in the sliding mode stage. After a comparison with the classical integer-order counterpart, it is seen that the control system with the proposed sliding surface displays better transient per...

متن کامل

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array

In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006